Reference architecture: up to 3,000 users (PREMIUM ONLY)

This page describes GitLab reference architecture for up to 3,000 users. It is designed to help your organization achieve a highly-available GitLab deployment. If you do not have the expertise or need to maintain a highly-available environment, you can have a simpler and less costly-to-operate environment by using the 2,000-user reference architecture. If you have fewer than 3,000 users and still want a highly-available GitLab deployment, you should still use this reference architecture but scale down the node sizes.

For a full list of reference architectures, see Available reference architectures.

  • Supported users (approximate): 3,000
  • High Availability: Yes
  • Test requests per second (RPS) rates: API: 60 RPS, Web: 6 RPS, Git: 6 RPS
Service Nodes Configuration GCP AWS Azure
External load balancing node 1 2 vCPU, 1.8 GB memory n1-highcpu-2 c5.large F2s v2
Redis 3 2 vCPU, 7.5 GB memory n1-standard-2 m5.large D2s v3
Consul + Sentinel 3 2 vCPU, 1.8 GB memory n1-highcpu-2 c5.large F2s v2
PostgreSQL 3 2 vCPU, 7.5 GB memory n1-standard-2 m5.large D2s v3
PgBouncer 3 2 vCPU, 1.8 GB memory n1-highcpu-2 c5.large F2s v2
Internal load balancing node 1 2 vCPU, 1.8 GB memory n1-highcpu-2 c5.large F2s v2
Gitaly 2 (minimum) 4 vCPU, 15 GB memory n1-standard-4 m5.xlarge D4s v3
Sidekiq 4 2 vCPU, 7.5 GB memory n1-standard-2 m5.large D2s v3
GitLab Rails 3 8 vCPU, 7.2 GB memory n1-highcpu-8 c5.2xlarge F8s v2
Monitoring node 1 2 vCPU, 1.8 GB memory n1-highcpu-2 c5.large F2s v2
Object storage n/a n/a n/a n/a n/a
NFS server (optional, not recommended) 1 4 vCPU, 3.6 GB memory n1-highcpu-4 c5.xlarge F4s v2
stateDiagram-v2
    [*] --> LoadBalancer
    LoadBalancer --> ApplicationServer

    ApplicationServer --> BackgroundJobs
    ApplicationServer --> Gitaly
    ApplicationServer --> Redis
    ApplicationServer --> PgBouncer
    PgBouncer --> Database
    ApplicationServer --> ObjectStorage
    BackgroundJobs --> ObjectStorage

    ApplicationMonitoring -->ApplicationServer
    ApplicationMonitoring -->Redis
    ApplicationMonitoring -->PgBouncer
    ApplicationMonitoring -->Database
    ApplicationMonitoring -->BackgroundJobs

    state Database {
      "PG_Primary_Node"
      "PG_Secondary_Node_1..2"
    }
    state Redis {
      "R_Primary_Node"
      "R_Replica_Node_1..2"
      "R_Consul/Sentinel_1..3"
    }

    state Gitaly {
      "Gitaly_1..2"
    }

    state BackgroundJobs {
      "Sidekiq_1..4"
    }

    state ApplicationServer {
      "GitLab_Rails_1..3"
    }

    state LoadBalancer {
      "LoadBalancer_1"
    }

    state ApplicationMonitoring {
      "Prometheus"
      "Grafana"
    }

    state PgBouncer {
      "Internal_Load_Balancer"
      "PgBouncer_1..3"
    }

The Google Cloud Platform (GCP) architectures were built and tested using the Intel Xeon E5 v3 (Haswell) CPU platform. On different hardware you may find that adjustments, either lower or higher, are required for your CPU or node counts. For more information, see our Sysbench-based CPU benchmark.

Due to better performance and availability, for data objects (such as LFS, uploads, or artifacts), using an object storage service is recommended instead of using NFS. Using an object storage service also doesn't require you to provision and maintain a node.

Setup components

To set up GitLab and its components to accommodate up to 3,000 users:

  1. Configure the external load balancing node to handle the load balancing of the GitLab application services nodes.
  2. Configure Redis.
  3. Configure Consul and Sentinel.
  4. Configure PostgreSQL, the database for GitLab.
  5. Configure PgBouncer.
  6. Configure the internal load balancing node.
  7. Configure Gitaly, which provides access to the Git repositories.
  8. Configure Sidekiq.
  9. Configure the main GitLab Rails application to run Puma/Unicorn, Workhorse, GitLab Shell, and to serve all frontend requests (which include UI, API, and Git over HTTP/SSH).
  10. Configure Prometheus to monitor your GitLab environment.
  11. Configure the object storage used for shared data objects.
  12. Configure Advanced Search (optional) for faster, more advanced code search across your entire GitLab instance.
  13. Configure NFS (optional, and not recommended) to have shared disk storage service as an alternative to Gitaly or object storage. You can skip this step if you're not using GitLab Pages (which requires NFS).

The servers start on the same 10.6.0.0/24 private network range, and can connect to each other freely on these addresses.

The following list includes descriptions of each server and its assigned IP:

  • 10.6.0.10: External Load Balancer
  • 10.6.0.61: Redis Primary
  • 10.6.0.62: Redis Replica 1
  • 10.6.0.63: Redis Replica 2
  • 10.6.0.11: Consul/Sentinel 1
  • 10.6.0.12: Consul/Sentinel 2
  • 10.6.0.13: Consul/Sentinel 3
  • 10.6.0.31: PostgreSQL primary
  • 10.6.0.32: PostgreSQL secondary 1
  • 10.6.0.33: PostgreSQL secondary 2
  • 10.6.0.21: PgBouncer 1
  • 10.6.0.22: PgBouncer 2
  • 10.6.0.23: PgBouncer 3
  • 10.6.0.20: Internal Load Balancer
  • 10.6.0.51: Gitaly 1
  • 10.6.0.52: Gitaly 2
  • 10.6.0.71: Sidekiq 1
  • 10.6.0.72: Sidekiq 2
  • 10.6.0.73: Sidekiq 3
  • 10.6.0.74: Sidekiq 4
  • 10.6.0.41: GitLab application 1
  • 10.6.0.42: GitLab application 2
  • 10.6.0.43: GitLab application 3
  • 10.6.0.81: Prometheus

Configure the external load balancer

In an active/active GitLab configuration, you'll need a load balancer to route traffic to the application servers. The specifics on which load balancer to use or its exact configuration is beyond the scope of GitLab documentation. We hope that if you're managing multi-node systems like GitLab, you already have a load balancer of choice. Some load balancer examples include HAProxy (open-source), F5 Big-IP LTM, and Citrix Net Scaler. This documentation outline the ports and protocols needed for use with GitLab.

This architecture has been tested and validated with HAProxy as the load balancer. Although other load balancers with similar feature sets could also be used, those load balancers have not been validated.

The next question is how you will handle SSL in your environment. There are several different options:

Application node terminates SSL

Configure your load balancer to pass connections on port 443 as TCP rather than HTTP(S) protocol. This will pass the connection to the application node's NGINX service untouched. NGINX will have the SSL certificate and listen on port 443.

See the NGINX HTTPS documentation for details on managing SSL certificates and configuring NGINX.

Load balancer terminates SSL without backend SSL

Configure your load balancer to use the HTTP(S) protocol rather than TCP. The load balancer will then be responsible for managing SSL certificates and terminating SSL.

Since communication between the load balancer and GitLab will not be secure, there is some additional configuration needed. See the NGINX proxied SSL documentation for details.

Load balancer terminates SSL with backend SSL

Configure your load balancer(s) to use the 'HTTP(S)' protocol rather than 'TCP'. The load balancer(s) will be responsible for managing SSL certificates that end users will see.

Traffic will also be secure between the load balancer(s) and NGINX in this scenario. There is no need to add configuration for proxied SSL since the connection will be secure all the way. However, configuration will need to be added to GitLab to configure SSL certificates. See NGINX HTTPS documentation for details on managing SSL certificates and configuring NGINX.

Readiness checks

Ensure the external load balancer only routes to working services with built in monitoring endpoints. The readiness checks all require additional configuration on the nodes being checked, otherwise, the external load balancer will not be able to connect.

Ports

The basic ports to be used are shown in the table below.

LB Port Backend Port Protocol
80 80 HTTP (1)
443 443 TCP or HTTPS (1) (2)
22 22 TCP
  • (1): Web terminal support requires your load balancer to correctly handle WebSocket connections. When using HTTP or HTTPS proxying, this means your load balancer must be configured to pass through the Connection and Upgrade hop-by-hop headers. See the web terminal integration guide for more details.
  • (2): When using HTTPS protocol for port 443, you will need to add an SSL certificate to the load balancers. If you wish to terminate SSL at the GitLab application server instead, use TCP protocol.

If you're using GitLab Pages with custom domain support you will need some additional port configurations. GitLab Pages requires a separate virtual IP address. Configure DNS to point the pages_external_url from /etc/gitlab/gitlab.rb at the new virtual IP address. See the GitLab Pages documentation for more information.

LB Port Backend Port Protocol
80 Varies (1) HTTP
443 Varies (1) TCP (2)
  • (1): The backend port for GitLab Pages depends on the gitlab_pages['external_http'] and gitlab_pages['external_https'] setting. See GitLab Pages documentation for more details.
  • (2): Port 443 for GitLab Pages should always use the TCP protocol. Users can configure custom domains with custom SSL, which would not be possible if SSL was terminated at the load balancer.

Alternate SSH Port

Some organizations have policies against opening SSH port 22. In this case, it may be helpful to configure an alternate SSH hostname that allows users to use SSH on port 443. An alternate SSH hostname will require a new virtual IP address compared to the other GitLab HTTP configuration above.

Configure DNS for an alternate SSH hostname such as altssh.gitlab.example.com.

LB Port Backend Port Protocol
443 22 TCP

Configure Redis

Using Redis in scalable environment is possible using a Primary x Replica topology with a Redis Sentinel service to watch and automatically start the failover procedure.

Redis requires authentication if used with Sentinel. See Redis Security documentation for more information. We recommend using a combination of a Redis password and tight firewall rules to secure your Redis service. You are highly encouraged to read the Redis Sentinel documentation before configuring Redis with GitLab to fully understand the topology and architecture.

In this section, you'll be guided through configuring an external Redis instance to be used with GitLab. The following IPs will be used as an example:

  • 10.6.0.61: Redis Primary
  • 10.6.0.62: Redis Replica 1
  • 10.6.0.63: Redis Replica 2

Provide your own Redis instance

Managed Redis from cloud providers such as AWS ElastiCache will work. If these services support high availability, be sure it is not the Redis Cluster type.

Redis version 5.0 or higher is required, as this is what ships with Omnibus GitLab packages starting with GitLab 13.0. Older Redis versions do not support an optional count argument to SPOP which is now required for Merge Trains.

Note the Redis node's IP address or hostname, port, and password (if required). These will be necessary when configuring the GitLab application servers later.

Standalone Redis using Omnibus GitLab

This is the section where we install and set up the new Redis instances.

The requirements for a Redis setup are the following:

  1. All Redis nodes must be able to talk to each other and accept incoming connections over Redis (6379) and Sentinel (26379) ports (unless you change the default ones).
  2. The server that hosts the GitLab application must be able to access the Redis nodes.
  3. Protect the nodes from access from external networks (Internet), using a firewall.

Both the primary and replica Redis nodes need the same password defined in redis['password']. At any time during a failover, the Sentinels can reconfigure a node and change its status from primary to replica (and vice versa).

Configuring the primary Redis instance

  1. SSH in to the Primary Redis server.

  2. Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.

  3. Edit /etc/gitlab/gitlab.rb and add the contents:

    # Specify server role as 'redis_master_role'
    roles ['redis_master_role']
    
    # IP address pointing to a local IP that the other machines can reach to.
    # You can also set bind to '0.0.0.0' which listen in all interfaces.
    # If you really need to bind to an external accessible IP, make
    # sure you add extra firewall rules to prevent unauthorized access.
    redis['bind'] = '10.6.0.61'
    
    # Define a port so Redis can listen for TCP requests which will allow other
    # machines to connect to it.
    redis['port'] = 6379
    
    # Set up password authentication for Redis (use the same password in all nodes).
    redis['password'] = 'redis-password-goes-here'
    
    ## Enable service discovery for Prometheus
    consul['enable'] = true
    consul['monitoring_service_discovery'] =  true
    
    ## The IPs of the Consul server nodes
    ## You can also use FQDNs and intermix them with IPs
    consul['configuration'] = {
       retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),
    }
    
    # Set the network addresses that the exporters will listen on
    node_exporter['listen_address'] = '0.0.0.0:9100'
    redis_exporter['listen_address'] = '0.0.0.0:9121'
    redis_exporter['flags'] = {
         'redis.addr' => 'redis://10.6.0.61:6379',
         'redis.password' => 'redis-password-goes-here',
    }
    
    # Disable auto migrations
    gitlab_rails['auto_migrate'] = false
  4. Reconfigure Omnibus GitLab for the changes to take effect.

You can specify multiple roles, like sentinel and Redis, as: roles ['redis_sentinel_role', 'redis_master_role']. Read more about roles.

You can list the current Redis Primary, Replica status by using:

/opt/gitlab/embedded/bin/redis-cli -h <host> -a 'redis-password-goes-here' info replication

Show running GitLab services by using:

gitlab-ctl status

The output should be similar to the following:

run: consul: (pid 30043) 76863s; run: log: (pid 29691) 76892s
run: logrotate: (pid 31152) 3070s; run: log: (pid 29595) 76908s
run: node-exporter: (pid 30064) 76862s; run: log: (pid 29624) 76904s
run: redis: (pid 30070) 76861s; run: log: (pid 29573) 76914s
run: redis-exporter: (pid 30075) 76861s; run: log: (pid 29674) 76896s

Configuring the replica Redis instances

  1. SSH in to the replica Redis server.

  2. Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.

  3. Edit /etc/gitlab/gitlab.rb and add the contents:

    # Specify server role as 'redis_replica_role'
    roles ['redis_replica_role']
    
    # IP address pointing to a local IP that the other machines can reach to.
    # You can also set bind to '0.0.0.0' which listen in all interfaces.
    # If you really need to bind to an external accessible IP, make
    # sure you add extra firewall rules to prevent unauthorized access.
    redis['bind'] = '10.6.0.62'
    
    # Define a port so Redis can listen for TCP requests which will allow other
    # machines to connect to it.
    redis['port'] = 6379
    
    # The same password for Redis authentication you set up for the primary node.
    redis['password'] = 'redis-password-goes-here'
    
    # The IP of the primary Redis node.
    redis['master_ip'] = '10.6.0.61'
    
    # Port of primary Redis server, uncomment to change to non default. Defaults
    # to `6379`.
    #redis['master_port'] = 6379
    
    ## Enable service discovery for Prometheus
    consul['enable'] = true
    consul['monitoring_service_discovery'] =  true
    
    ## The IPs of the Consul server nodes
    ## You can also use FQDNs and intermix them with IPs
    consul['configuration'] = {
       retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),
    }
    
    # Set the network addresses that the exporters will listen on
    node_exporter['listen_address'] = '0.0.0.0:9100'
    redis_exporter['listen_address'] = '0.0.0.0:9121'
    redis_exporter['flags'] = {
         'redis.addr' => 'redis://10.6.0.62:6379',
         'redis.password' => 'redis-password-goes-here',
    }
    
    # Disable auto migrations
    gitlab_rails['auto_migrate'] = false
  4. Reconfigure Omnibus GitLab for the changes to take effect.

  5. Go through the steps again for all the other replica nodes, and make sure to set up the IPs correctly.

You can specify multiple roles, like sentinel and Redis, as: roles ['redis_sentinel_role', 'redis_master_role']. Read more about roles.

These values don't have to be changed again in /etc/gitlab/gitlab.rb after a failover, as the nodes will be managed by the Sentinels, and even after a gitlab-ctl reconfigure, they will get their configuration restored by the same Sentinels.

Advanced configuration options are supported and can be added if needed.

Configure Consul and Sentinel

Now that the Redis servers are all set up, let's configure the Sentinel servers. The following IPs will be used as an example:

  • 10.6.0.11: Consul/Sentinel 1
  • 10.6.0.12: Consul/Sentinel 2
  • 10.6.0.13: Consul/Sentinel 3

NOTE: If you're using an external Redis Sentinel instance, be sure to exclude the requirepass parameter from the Sentinel configuration. This parameter causes clients to report NOAUTH Authentication required.. Redis Sentinel 3.2.x doesn't support password authentication.

To configure the Sentinel:

  1. SSH in to the server that will host Consul/Sentinel.

  2. Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.

  3. Edit /etc/gitlab/gitlab.rb and add the contents:

    roles ['redis_sentinel_role', 'consul_role']
    
    # Must be the same in every sentinel node
    redis['master_name'] = 'gitlab-redis'
    
    # The same password for Redis authentication you set up for the primary node.
    redis['master_password'] = 'redis-password-goes-here'
    
    # The IP of the primary Redis node.
    redis['master_ip'] = '10.6.0.61'
    
    # Define a port so Redis can listen for TCP requests which will allow other
    # machines to connect to it.
    redis['port'] = 6379
    
    # Port of primary Redis server, uncomment to change to non default. Defaults
    # to `6379`.
    #redis['master_port'] = 6379
    
    ## Configure Sentinel
    sentinel['bind'] = '10.6.0.11'
    
    # Port that Sentinel listens on, uncomment to change to non default. Defaults
    # to `26379`.
    # sentinel['port'] = 26379
    
    ## Quorum must reflect the amount of voting sentinels it take to start a failover.
    ## Value must NOT be greater then the amount of sentinels.
    ##
    ## The quorum can be used to tune Sentinel in two ways:
    ## 1. If a the quorum is set to a value smaller than the majority of Sentinels
    ##    we deploy, we are basically making Sentinel more sensible to primary failures,
    ##    triggering a failover as soon as even just a minority of Sentinels is no longer
    ##    able to talk with the primary.
    ## 1. If a quorum is set to a value greater than the majority of Sentinels, we are
    ##    making Sentinel able to failover only when there are a very large number (larger
    ##    than majority) of well connected Sentinels which agree about the primary being down.s
    sentinel['quorum'] = 2
    
    ## Consider unresponsive server down after x amount of ms.
    # sentinel['down_after_milliseconds'] = 10000
    
    ## Specifies the failover timeout in milliseconds. It is used in many ways:
    ##
    ## - The time needed to re-start a failover after a previous failover was
    ##   already tried against the same primary by a given Sentinel, is two
    ##   times the failover timeout.
    ##
    ## - The time needed for a replica replicating to a wrong primary according
    ##   to a Sentinel current configuration, to be forced to replicate
    ##   with the right primary, is exactly the failover timeout (counting since
    ##   the moment a Sentinel detected the misconfiguration).
    ##
    ## - The time needed to cancel a failover that is already in progress but
    ##   did not produced any configuration change (REPLICAOF NO ONE yet not
    ##   acknowledged by the promoted replica).
    ##
    ## - The maximum time a failover in progress waits for all the replica to be
    ##   reconfigured as replicas of the new primary. However even after this time
    ##   the replicas will be reconfigured by the Sentinels anyway, but not with
    ##   the exact parallel-syncs progression as specified.
    # sentinel['failover_timeout'] = 60000
    
    ## Enable service discovery for Prometheus
    consul['enable'] = true
    consul['monitoring_service_discovery'] =  true
    
    ## The IPs of the Consul server nodes
    ## You can also use FQDNs and intermix them with IPs
    consul['configuration'] = {
       server: true,
       retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),
    }
    
    # Set the network addresses that the exporters will listen on
    node_exporter['listen_address'] = '0.0.0.0:9100'
    redis_exporter['listen_address'] = '0.0.0.0:9121'
    
    # Disable auto migrations
    gitlab_rails['auto_migrate'] = false
  4. Reconfigure Omnibus GitLab for the changes to take effect.

  5. Go through the steps again for all the other Consul/Sentinel nodes, and make sure you set up the correct IPs.

A Consul leader is elected when the provisioning of the third Consul server is complete. Viewing the Consul logs sudo gitlab-ctl tail consul displays ...[INFO] consul: New leader elected: ....

You can list the current Consul members (server, client):

sudo /opt/gitlab/embedded/bin/consul members

You can verify the GitLab services are running:

sudo gitlab-ctl status

The output should be similar to the following:

run: consul: (pid 30074) 76834s; run: log: (pid 29740) 76844s
run: logrotate: (pid 30925) 3041s; run: log: (pid 29649) 76861s
run: node-exporter: (pid 30093) 76833s; run: log: (pid 29663) 76855s
run: sentinel: (pid 30098) 76832s; run: log: (pid 29704) 76850s

Configure PostgreSQL

In this section, you'll be guided through configuring an external PostgreSQL database to be used with GitLab.

Provide your own PostgreSQL instance

If you're hosting GitLab on a cloud provider, you can optionally use a managed service for PostgreSQL. For example, AWS offers a managed Relational Database Service (RDS) that runs PostgreSQL.

If you use a cloud-managed service, or provide your own PostgreSQL:

  1. Set up PostgreSQL according to the database requirements document.
  2. Set up a gitlab username with a password of your choice. The gitlab user needs privileges to create the gitlabhq_production database.
  3. Configure the GitLab application servers with the appropriate details. This step is covered in Configuring the GitLab Rails application.

See Configure GitLab using an external PostgreSQL service for further configuration steps.

Standalone PostgreSQL using Omnibus GitLab

The following IPs will be used as an example:

  • 10.6.0.31: PostgreSQL primary
  • 10.6.0.32: PostgreSQL secondary 1
  • 10.6.0.33: PostgreSQL secondary 2

First, make sure to install the Linux GitLab package on each node. Following the steps, install the necessary dependencies from step 1, and add the GitLab package repository from step 2. When installing GitLab in the second step, do not supply the EXTERNAL_URL value.

PostgreSQL nodes

  1. SSH in to one of the PostgreSQL nodes.

  2. Generate a password hash for the PostgreSQL username/password pair. This assumes you will use the default username of gitlab (recommended). The command will request a password and confirmation. Use the value that is output by this command in the next step as the value of <postgresql_password_hash>:

    sudo gitlab-ctl pg-password-md5 gitlab
  3. Generate a password hash for the PgBouncer username/password pair. This assumes you will use the default username of pgbouncer (recommended). The command will request a password and confirmation. Use the value that is output by this command in the next step as the value of <pgbouncer_password_hash>:

    sudo gitlab-ctl pg-password-md5 pgbouncer
  4. Generate a password hash for the Consul database username/password pair. This assumes you will use the default username of gitlab-consul (recommended). The command will request a password and confirmation. Use the value that is output by this command in the next step as the value of <consul_password_hash>:

    sudo gitlab-ctl pg-password-md5 gitlab-consul
  5. On every database node, edit /etc/gitlab/gitlab.rb replacing values noted in the # START user configuration section:

    # Disable all components except PostgreSQL, Patroni, and Consul
    roles ['postgres_role']
    
    # PostgreSQL configuration
    postgresql['listen_address'] = '0.0.0.0'
    
    # Enable Patroni
    patroni['enable'] = true
    # Set `max_wal_senders` to one more than the number of database nodes in the cluster.
    # This is used to prevent replication from using up all of the
    # available database connections.
    patroni['postgresql']['max_wal_senders'] = 4
    patroni['postgresql']['max_replication_slots'] = 4
    # Incoming recommended value for max connections is 500. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
    patroni['postgresql']['max_connections'] = 500
    
    # Disable automatic database migrations
    gitlab_rails['auto_migrate'] = false
    
    # Configure the Consul agent
    consul['enable'] = true
    consul['services'] = %w(postgresql)
    ## Enable service discovery for Prometheus
    consul['monitoring_service_discovery'] =  true
    
    # START user configuration
    # Please set the real values as explained in Required Information section
    #
    # Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value
    postgresql['pgbouncer_user_password'] = '<pgbouncer_password_hash>'
    # Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
    postgresql['sql_user_password'] = '<postgresql_password_hash>'
    
    # Replace XXX.XXX.XXX.XXX/YY with Network Address
    postgresql['trust_auth_cidr_addresses'] = %w(10.6.0.0/24)
    
    # Set the network addresses that the exporters will listen on for monitoring
    node_exporter['listen_address'] = '0.0.0.0:9100'
    postgres_exporter['listen_address'] = '0.0.0.0:9187'
    
    ## The IPs of the Consul server nodes
    ## You can also use FQDNs and intermix them with IPs
    consul['configuration'] = {
       retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),
    }
    #
    # END user configuration

PostgreSQL, with Patroni managing its failover, will default to use pg_rewind by default to handle conflicts. Like most failover handling methods, this has a small chance of leading to data loss. Learn more about the various Patroni replication methods.

  1. Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace the file of the same name on this server. If that file is not on this server, add the file from your Consul server to this server.

  2. Reconfigure GitLab for the changes to take effect.

Advanced configuration options are supported and can be added if needed.

PostgreSQL post-configuration

SSH in to the primary node:

  1. Open a database prompt:

    gitlab-psql -d gitlabhq_production
  2. Enable the pg_trgm and btree_gist extensions:

    CREATE EXTENSION pg_trgm;
    CREATE EXTENSION btree_gist;
  3. Exit the database prompt by typing \q and Enter.

  4. Check the status of the leader and cluster:

    gitlab-ctl patroni members

    The output should be similar to the following:

    | Cluster       | Member                            |  Host     | Role   | State   | TL  | Lag in MB | Pending restart |
    |---------------|-----------------------------------|-----------|--------|---------|-----|-----------|-----------------|
    | postgresql-ha | <PostgreSQL primary hostname>     | 10.6.0.31 | Leader | running | 175 |           | *               |
    | postgresql-ha | <PostgreSQL secondary 1 hostname> | 10.6.0.32 |        | running | 175 | 0         | *               |
    | postgresql-ha | <PostgreSQL secondary 2 hostname> | 10.6.0.33 |        | running | 175 | 0         | *               |

If the 'State' column for any node doesn't say "running", check the Troubleshooting section before proceeding.

Configure PgBouncer

Now that the PostgreSQL servers are all set up, let's configure PgBouncer. The following IPs will be used as an example:

  • 10.6.0.21: PgBouncer 1
  • 10.6.0.22: PgBouncer 2
  • 10.6.0.23: PgBouncer 3
  1. On each PgBouncer node, edit /etc/gitlab/gitlab.rb, and replace <consul_password_hash> and <pgbouncer_password_hash> with the password hashes you set up previously:

    # Disable all components except Pgbouncer and Consul agent
    roles ['pgbouncer_role']
    
    # Configure PgBouncer
    pgbouncer['admin_users'] = %w(pgbouncer gitlab-consul)
    pgbouncer['users'] = {
       'gitlab-consul': {
          password: '<consul_password_hash>'
       },
       'pgbouncer': {
          password: '<pgbouncer_password_hash>'
       }
    }
    # Incoming recommended value for max db connections is 150. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
    pgbouncer['max_db_connections'] = 150
    
    # Configure Consul agent
    consul['watchers'] = %w(postgresql)
    consul['enable'] = true
    consul['configuration'] = {
    retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
    }
    
    # Enable service discovery for Prometheus
    consul['monitoring_service_discovery'] = true
    
    # Set the network addresses that the exporters will listen on
    node_exporter['listen_address'] = '0.0.0.0:9100'
    pgbouncer_exporter['listen_address'] = '0.0.0.0:9188'
  2. Reconfigure Omnibus GitLab for the changes to take effect.

  3. Create a .pgpass file so Consul is able to reload PgBouncer. Enter the PgBouncer password twice when asked:

    gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
  4. Ensure each node is talking to the current master:

    gitlab-ctl pgb-console # You will be prompted for PGBOUNCER_PASSWORD

    If there is an error psql: ERROR: Auth failed after typing in the password, ensure you previously generated the MD5 password hashes with the correct format. The correct format is to concatenate the password and the username: PASSWORDUSERNAME. For example, Sup3rS3cr3tpgbouncer would be the text needed to generate an MD5 password hash for the pgbouncer user.

  5. Once the console prompt is available, run the following queries:

    show databases ; show clients ;

    The output should be similar to the following:

            name         |  host       | port |      database       | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections
    ---------------------+-------------+------+---------------------+------------+-----------+--------------+-----------+-----------------+---------------------
     gitlabhq_production | MASTER_HOST | 5432 | gitlabhq_production |            |        20 |            0 |           |               0 |                   0
     pgbouncer           |             | 6432 | pgbouncer           | pgbouncer  |         2 |            0 | statement |               0 |                   0
    (2 rows)
    
     type |   user    |      database       |  state  |   addr         | port  | local_addr | local_port |    connect_time     |    request_time     |    ptr    | link | remote_pid | tls
    ------+-----------+---------------------+---------+----------------+-------+------------+------------+---------------------+---------------------+-----------+------+------------+-----
     C    | pgbouncer | pgbouncer           | active  | 127.0.0.1      | 56846 | 127.0.0.1  |       6432 | 2017-08-21 18:09:59 | 2017-08-21 18:10:48 | 0x22b3880 |      |          0 |
    (2 rows)
  6. Verify the GitLab services are running:

    sudo gitlab-ctl status

    The output should be similar to the following:

    run: consul: (pid 31530) 77150s; run: log: (pid 31106) 77182s
    run: logrotate: (pid 32613) 3357s; run: log: (pid 30107) 77500s
    run: node-exporter: (pid 31550) 77149s; run: log: (pid 30138) 77493s
    run: pgbouncer: (pid 32033) 75593s; run: log: (pid 31117) 77175s
    run: pgbouncer-exporter: (pid 31558) 77148s; run: log: (pid 31498) 77156s

Configure the internal load balancer

If you're running more than one PgBouncer node as recommended, then at this time you'll need to set up a TCP internal load balancer to serve each correctly.

The following IP will be used as an example:

  • 10.6.0.20: Internal Load Balancer

Here's how you could do it with HAProxy:

global
    log /dev/log local0
    log localhost local1 notice
    log stdout format raw local0

defaults
    log global
    default-server inter 10s fall 3 rise 2
    balance leastconn

frontend internal-pgbouncer-tcp-in
    bind *:6432
    mode tcp
    option tcplog

    default_backend pgbouncer

backend pgbouncer
    mode tcp
    option tcp-check

    server pgbouncer1 10.6.0.21:6432 check
    server pgbouncer2 10.6.0.22:6432 check
    server pgbouncer3 10.6.0.23:6432 check

Refer to your preferred Load Balancer's documentation for further guidance.

Configure Gitaly

NOTE: Gitaly Cluster support for the Reference Architectures is being worked on as a collaborative effort between the Quality Engineering and Gitaly teams. When this component has been verified some Architecture specs will likely change as a result to support the new and improved designed.

Gitaly server node requirements are dependent on data, specifically the number of projects and those projects' sizes. It's recommended that a Gitaly server node stores no more than 5 TB of data. Depending on your repository storage requirements, you may require additional Gitaly server nodes.

Due to Gitaly having notable input and output requirements, we strongly recommend that all Gitaly nodes use solid-state drives (SSDs). These SSDs should have a throughput of at least 8,000 input/output operations per second (IOPS) for read operations and 2,000 IOPS for write operations. These IOPS values are initial recommendations, and may be adjusted to greater or lesser values depending on the scale of your environment's workload. If you're running the environment on a Cloud provider, refer to their documentation about how to configure IOPS correctly.

Be sure to note the following items:

  • The GitLab Rails application shards repositories into repository storage paths.
  • A Gitaly server can host one or more storage paths.
  • A GitLab server can use one or more Gitaly server nodes.
  • Gitaly addresses must be specified to be correctly resolvable for all Gitaly clients.
  • Gitaly servers must not be exposed to the public internet, as Gitaly's network traffic is unencrypted by default. The use of a firewall is highly recommended to restrict access to the Gitaly server. Another option is to use TLS.

NOTE: The token referred to throughout the Gitaly documentation is an arbitrary password selected by the administrator. This token is unrelated to tokens created for the GitLab API or other similar web API tokens.

This section describes how to configure two Gitaly servers, with the following IPs and domain names:

  • 10.6.0.51: Gitaly 1 (gitaly1.internal)
  • 10.6.0.52: Gitaly 2 (gitaly2.internal)

Assumptions about your servers include having the secret token be gitalysecret, and that your GitLab installation has three repository storages:

  • default on Gitaly 1
  • storage1 on Gitaly 1
  • storage2 on Gitaly 2

On each node:

  1. Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page, and do not provide the EXTERNAL_URL value.

  2. Edit the Gitaly server node's /etc/gitlab/gitlab.rb file to configure storage paths, enable the network listener, and to configure the token:

    # /etc/gitlab/gitlab.rb
    
    # Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
    # to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
    # The following two values must be the same as their respective values
    # of the GitLab Rails application setup
    gitaly['auth_token'] = 'gitalysecret'
    gitlab_shell['secret_token'] = 'shellsecret'
    
    # Avoid running unnecessary services on the Gitaly server
    postgresql['enable'] = false
    redis['enable'] = false
    nginx['enable'] = false
    puma['enable'] = false
    unicorn['enable'] = false
    sidekiq['enable'] = false
    gitlab_workhorse['enable'] = false
    grafana['enable'] = false
    gitlab_exporter['enable'] = false
    
    # If you run a separate monitoring node you can disable these services
    alertmanager['enable'] = false
    prometheus['enable'] = false
    
    # Prevent database connections during 'gitlab-ctl reconfigure'
    gitlab_rails['rake_cache_clear'] = false
    gitlab_rails['auto_migrate'] = false
    
    # Configure the gitlab-shell API callback URL. Without this, `git push` will
    # fail. This can be your 'front door' GitLab URL or an internal load
    # balancer.
    # Don't forget to copy `/etc/gitlab/gitlab-secrets.json` from web server to Gitaly server.
    gitlab_rails['internal_api_url'] = 'https://gitlab.example.com'
    
    # Make Gitaly accept connections on all network interfaces. You must use
    # firewalls to restrict access to this address/port.
    # Comment out following line if you only want to support TLS connections
    gitaly['listen_addr'] = "0.0.0.0:8075"
    
    ## Enable service discovery for Prometheus
    consul['enable'] = true
    consul['monitoring_service_discovery'] =  true
    
    # Set the network addresses that the exporters will listen on for monitoring
    gitaly['prometheus_listen_addr'] = "0.0.0.0:9236"
    node_exporter['listen_address'] = '0.0.0.0:9100'
    gitlab_rails['prometheus_address'] = '10.6.0.81:9090'
    
    ## The IPs of the Consul server nodes
    ## You can also use FQDNs and intermix them with IPs
    consul['configuration'] = {
       retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),
    }
  3. Append the following to /etc/gitlab/gitlab.rb for each respective server:

    • On gitaly1.internal:

      git_data_dirs({
        'default' => {
          'path' => '/var/opt/gitlab/git-data'
        },
        'storage1' => {
          'path' => '/mnt/gitlab/git-data'
        },
      })
    • On gitaly2.internal:

      git_data_dirs({
        'storage2' => {
          'path' => '/mnt/gitlab/git-data'
        },
      })
  4. Save the file, and then reconfigure GitLab.

  5. Confirm that Gitaly can perform callbacks to the internal API:

    sudo /opt/gitlab/embedded/bin/gitaly-hooks check /var/opt/gitlab/gitaly/config.toml
  6. Verify the GitLab services are running:

    sudo gitlab-ctl status

    The output should be similar to the following:

    run: consul: (pid 30339) 77006s; run: log: (pid 29878) 77020s
    run: gitaly: (pid 30351) 77005s; run: log: (pid 29660) 77040s
    run: logrotate: (pid 7760) 3213s; run: log: (pid 29782) 77032s
    run: node-exporter: (pid 30378) 77004s; run: log: (pid 29812) 77026s

Gitaly TLS support

Gitaly supports TLS encryption. To be able to communicate with a Gitaly instance that listens for secure connections you will need to use tls:// URL scheme in the gitaly_address of the corresponding storage entry in the GitLab configuration.

You will need to bring your own certificates as this isn't provided automatically. The certificate, or its certificate authority, must be installed on all Gitaly nodes (including the Gitaly node using the certificate) and on all client nodes that communicate with it following the procedure described in GitLab custom certificate configuration.

NOTE: The self-signed certificate must specify the address you use to access the Gitaly server. If you are addressing the Gitaly server by a hostname, you can either use the Common Name field for this, or add it as a Subject Alternative Name. If you are addressing the Gitaly server by its IP address, you must add it as a Subject Alternative Name to the certificate. gRPC does not support using an IP address as Common Name in a certificate.

It's possible to configure Gitaly servers with both an unencrypted listening address (listen_addr) and an encrypted listening address (tls_listen_addr) at the same time. This allows you to do a gradual transition from unencrypted to encrypted traffic, if necessary.

To configure Gitaly with TLS:

  1. Create the /etc/gitlab/ssl directory and copy your key and certificate there:

    sudo mkdir -p /etc/gitlab/ssl
    sudo chmod 755 /etc/gitlab/ssl
    sudo cp key.pem cert.pem /etc/gitlab/ssl/
    sudo chmod 644 key.pem cert.pem
  2. Copy the cert to /etc/gitlab/trusted-certs so Gitaly will trust the cert when calling into itself:

    sudo cp /etc/gitlab/ssl/cert.pem /etc/gitlab/trusted-certs/
  3. Edit /etc/gitlab/gitlab.rb and add:

    gitaly['tls_listen_addr'] = "0.0.0.0:9999"
    gitaly['certificate_path'] = "/etc/gitlab/ssl/cert.pem"
    gitaly['key_path'] = "/etc/gitlab/ssl/key.pem"
  4. Delete gitaly['listen_addr'] to allow only encrypted connections.

  5. Save the file and reconfigure GitLab.

Configure Sidekiq

Sidekiq requires connection to the Redis, PostgreSQL and Gitaly instance. The following IPs will be used as an example:

  • 10.6.0.71: Sidekiq 1
  • 10.6.0.72: Sidekiq 2
  • 10.6.0.73: Sidekiq 3
  • 10.6.0.74: Sidekiq 4

To configure the Sidekiq nodes, one each one:

  1. SSH in to the Sidekiq server.

  2. Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page.

  3. Open /etc/gitlab/gitlab.rb with your editor:

    ########################################
    #####        Services Disabled       ###
    ########################################
    
    nginx['enable'] = false
    grafana['enable'] = false
    prometheus['enable'] = false
    gitlab_rails['auto_migrate'] = false
    alertmanager['enable'] = false
    gitaly['enable'] = false
    gitlab_workhorse['enable'] = false
    nginx['enable'] = false
    puma['enable'] = false
    postgres_exporter['enable'] = false
    postgresql['enable'] = false
    redis['enable'] = false
    redis_exporter['enable'] = false
    gitlab_exporter['enable'] = false
    
    ########################################
    ####              Redis              ###
    ########################################
    
    ## Must be the same in every sentinel node
    redis['master_name'] = 'gitlab-redis'
    
    ## The same password for Redis authentication you set up for the master node.
    redis['master_password'] = '<redis_primary_password>'
    
    ## A list of sentinels with `host` and `port`
    gitlab_rails['redis_sentinels'] = [
       {'host' => '10.6.0.11', 'port' => 26379},
       {'host' => '10.6.0.12', 'port' => 26379},
       {'host' => '10.6.0.13', 'port' => 26379},
    ]
    
    #######################################
    ###              Gitaly             ###
    #######################################
    
    git_data_dirs({
      'default' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' },
      'storage1' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' },
      'storage2' => { 'gitaly_address' => 'tcp://gitaly2.internal:8075' },
    })
    gitlab_rails['gitaly_token'] = 'YOUR_TOKEN'
    
    #######################################
    ###            Postgres             ###
    #######################################
    gitlab_rails['db_host'] = '10.6.0.20' # internal load balancer IP
    gitlab_rails['db_port'] = 6432
    gitlab_rails['db_password'] = '<postgresql_user_password>'
    gitlab_rails['db_adapter'] = 'postgresql'
    gitlab_rails['db_encoding'] = 'unicode'
    gitlab_rails['auto_migrate'] = false
    
    #######################################
    ###      Sidekiq configuration      ###
    #######################################
    sidekiq['listen_address'] = "0.0.0.0"
    
    #######################################
    ###     Monitoring configuration    ###
    #######################################
    consul['enable'] = true
    consul['monitoring_service_discovery'] =  true
    
    consul['configuration'] = {
       retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
    }
    
    # Set the network addresses that the exporters will listen on
    node_exporter['listen_address'] = '0.0.0.0:9100'
    
    # Rails Status for prometheus
    gitlab_rails['monitoring_whitelist'] = ['10.6.0.81/32', '127.0.0.0/8']
    gitlab_rails['prometheus_address'] = '10.6.0.81:9090'
  4. Save the file and reconfigure GitLab.

  5. Verify the GitLab services are running:

    sudo gitlab-ctl status

    The output should be similar to the following:

    run: consul: (pid 30114) 77353s; run: log: (pid 29756) 77367s
    run: logrotate: (pid 9898) 3561s; run: log: (pid 29653) 77380s
    run: node-exporter: (pid 30134) 77353s; run: log: (pid 29706) 77372s
    run: sidekiq: (pid 30142) 77351s; run: log: (pid 29638) 77386s

NOTE: You can also run multiple Sidekiq processes.

Configure GitLab Rails

This section describes how to configure the GitLab application (Rails) component.

On each node perform the following:

  1. If you're using NFS:

    1. If necessary, install the NFS client utility packages using the following commands:

      # Ubuntu/Debian
      apt-get install nfs-common
      
      # CentOS/Red Hat
      yum install nfs-utils nfs-utils-lib
    2. Specify the necessary NFS mounts in /etc/fstab. The exact contents of /etc/fstab will depend on how you chose to configure your NFS server. See the NFS documentation for examples and the various options.

    3. Create the shared directories. These may be different depending on your NFS mount locations.

      mkdir -p /var/opt/gitlab/.ssh /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/git-data
  2. Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page.

  3. Create or edit /etc/gitlab/gitlab.rb and use the following configuration. To maintain uniformity of links across nodes, the external_url on the application server should point to the external URL that users will use to access GitLab. This would be the URL of the external load balancer which will route traffic to the GitLab application server:

    external_url 'https://gitlab.example.com'
    
    # Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
    # to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
    # The following two values must be the same as their respective values
    # of the Gitaly setup
    gitlab_rails['gitaly_token'] = 'gitalysecret'
    gitlab_shell['secret_token'] = 'shellsecret'
    
    git_data_dirs({
      'default' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' },
      'storage1' => { 'gitaly_address' => 'tcp://gitaly1.internal:8075' },
      'storage2' => { 'gitaly_address' => 'tcp://gitaly2.internal:8075' },
    })
    
    ## Disable components that will not be on the GitLab application server
    roles ['application_role']
    gitaly['enable'] = false
    nginx['enable'] = true
    sidekiq['enable'] = false
    
    ## PostgreSQL connection details
    # Disable PostgreSQL on the application node
    postgresql['enable'] = false
    gitlab_rails['db_host'] = '10.6.0.20' # internal load balancer IP
    gitlab_rails['db_port'] = 6432
    gitlab_rails['db_password'] = '<postgresql_user_password>'
    gitlab_rails['auto_migrate'] = false
    
    ## Redis connection details
    ## Must be the same in every sentinel node
    redis['master_name'] = 'gitlab-redis'
    
    ## The same password for Redis authentication you set up for the Redis primary node.
    redis['master_password'] = '<redis_primary_password>'
    
    ## A list of sentinels with `host` and `port`
    gitlab_rails['redis_sentinels'] = [
      {'host' => '10.6.0.11', 'port' => 26379},
      {'host' => '10.6.0.12', 'port' => 26379},
      {'host' => '10.6.0.13', 'port' => 26379}
    ]
    
    ## Enable service discovery for Prometheus
    consul['enable'] = true
    consul['monitoring_service_discovery'] =  true
    
    # Set the network addresses that the exporters used for monitoring will listen on
    node_exporter['listen_address'] = '0.0.0.0:9100'
    gitlab_workhorse['prometheus_listen_addr'] = '0.0.0.0:9229'
    sidekiq['listen_address'] = "0.0.0.0"
    puma['listen'] = '0.0.0.0'
    
    ## The IPs of the Consul server nodes
    ## You can also use FQDNs and intermix them with IPs
    consul['configuration'] = {
       retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),
    }
    
    # Add the monitoring node's IP address to the monitoring whitelist and allow it to
    # scrape the NGINX metrics
    gitlab_rails['monitoring_whitelist'] = ['10.6.0.81/32', '127.0.0.0/8']
    nginx['status']['options']['allow'] = ['10.6.0.81/32', '127.0.0.0/8']
    gitlab_rails['prometheus_address'] = '10.6.0.81:9090'
    
    ## Uncomment and edit the following options if you have set up NFS
    ##
    ## Prevent GitLab from starting if NFS data mounts are not available
    ##
    #high_availability['mountpoint'] = '/var/opt/gitlab/git-data'
    ##
    ## Ensure UIDs and GIDs match between servers for permissions via NFS
    ##
    #user['uid'] = 9000
    #user['gid'] = 9000
    #web_server['uid'] = 9001
    #web_server['gid'] = 9001
    #registry['uid'] = 9002
    #registry['gid'] = 9002
  4. If you're using Gitaly with TLS support, make sure the git_data_dirs entry is configured with tls instead of tcp:

    git_data_dirs({
      'default' => { 'gitaly_address' => 'tls://gitaly1.internal:9999' },
      'storage1' => { 'gitaly_address' => 'tls://gitaly1.internal:9999' },
      'storage2' => { 'gitaly_address' => 'tls://gitaly2.internal:9999' },
    })
    1. Copy the cert into /etc/gitlab/trusted-certs:

      sudo cp cert.pem /etc/gitlab/trusted-certs/
  5. Save the file and reconfigure GitLab.

  6. Run sudo gitlab-rake gitlab:gitaly:check to confirm the node can connect to Gitaly.

  7. Tail the logs to see the requests:

    sudo gitlab-ctl tail gitaly
  8. Save the /etc/gitlab/gitlab-secrets.json file from one of the two application nodes and install it on the other application node, the Gitaly node and the Sidekiq node and reconfigure GitLab.

  9. Verify the GitLab services are running:

    sudo gitlab-ctl status

    The output should be similar to the following:

    run: consul: (pid 4890) 8647s; run: log: (pid 29962) 79128s
    run: gitlab-exporter: (pid 4902) 8647s; run: log: (pid 29913) 79134s
    run: gitlab-workhorse: (pid 4904) 8646s; run: log: (pid 29713) 79155s
    run: logrotate: (pid 12425) 1446s; run: log: (pid 29798) 79146s
    run: nginx: (pid 4925) 8646s; run: log: (pid 29726) 79152s
    run: node-exporter: (pid 4931) 8645s; run: log: (pid 29855) 79140s
    run: puma: (pid 4936) 8645s; run: log: (pid 29656) 79161s

When you specify https in the external_url, as in the previous example, GitLab expects that the SSL certificates are in /etc/gitlab/ssl/. If the certificates aren't present, NGINX will fail to start. For more information, see the NGINX documentation.

GitLab Rails post-configuration

  1. Ensure that all migrations ran:

    gitlab-rake gitlab:db:configure

    If you encounter a rake aborted! error message stating that PgBouncer is failing to connect to PostgreSQL, it may be that your PgBouncer node's IP address is missing from PostgreSQL's trust_auth_cidr_addresses in gitlab.rb on your database nodes. Before proceeding, see PgBouncer error ERROR: pgbouncer cannot connect to server.

  2. Configure fast lookup of authorized SSH keys in the database.

Configure Prometheus

The Omnibus GitLab package can be used to configure a standalone Monitoring node running Prometheus and Grafana:

  1. SSH in to the Monitoring node.

  2. Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page.

  3. Edit /etc/gitlab/gitlab.rb and add the contents:

    external_url 'http://gitlab.example.com'
    
    # Disable all other services
    gitlab_rails['auto_migrate'] = false
    alertmanager['enable'] = false
    gitaly['enable'] = false
    gitlab_exporter['enable'] = false
    gitlab_workhorse['enable'] = false
    nginx['enable'] = true
    postgres_exporter['enable'] = false
    postgresql['enable'] = false
    redis['enable'] = false
    redis_exporter['enable'] = false
    sidekiq['enable'] = false
    puma['enable'] = false
    unicorn['enable'] = false
    node_exporter['enable'] = false
    gitlab_exporter['enable'] = false
    
    # Enable Prometheus
    prometheus['enable'] = true
    prometheus['listen_address'] = '0.0.0.0:9090'
    prometheus['monitor_kubernetes'] = false
    
    # Enable Login form
    grafana['disable_login_form'] = false
    
    # Enable Grafana
    grafana['enable'] = true
    grafana['admin_password'] = '<grafana_password>'
    
    # Enable service discovery for Prometheus
    consul['enable'] = true
    consul['monitoring_service_discovery'] =  true
    consul['configuration'] = {
       retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
    }
  4. Save the file and reconfigure GitLab.

  5. In the GitLab UI, set admin/application_settings/metrics_and_profiling > Metrics - Grafana to /-/grafana to http[s]://<MONITOR NODE>/-/grafana.

  6. Verify the GitLab services are running:

    sudo gitlab-ctl status

    The output should be similar to the following:

    run: consul: (pid 31637) 17337s; run: log: (pid 29748) 78432s
    run: grafana: (pid 31644) 17337s; run: log: (pid 29719) 78438s
    run: logrotate: (pid 31809) 2936s; run: log: (pid 29581) 78462s
    run: nginx: (pid 31665) 17335s; run: log: (pid 29556) 78468s
    run: prometheus: (pid 31672) 17335s; run: log: (pid 29633) 78456s

Configure the object storage

GitLab supports using an object storage service for holding numerous types of data. It's recommended over NFS and in general it's better in larger setups as object storage is typically much more performant, reliable, and scalable.

GitLab has been tested on a number of object storage providers:

There are two ways of specifying object storage configuration in GitLab:

Starting with GitLab 13.2, consolidated object storage configuration is available. It simplifies your GitLab configuration since the connection details are shared across object types. Refer to Consolidated object storage configuration guide for instructions on how to set it up.

For configuring object storage in GitLab 13.1 and earlier, or for storage types not supported by consolidated configuration form, refer to the following guides based on what features you intend to use:

Object storage type Supported by consolidated configuration?
Backups No
Job artifacts including archived job logs Yes
LFS objects Yes
Uploads Yes
Container Registry (optional feature) No
Merge request diffs Yes
Mattermost No
Packages (optional feature) Yes
Dependency Proxy (optional feature) Yes
Pseudonymizer (optional feature) (ULTIMATE ONLY) No
Autoscale runner caching (optional for improved performance) No
Terraform state files Yes

Using separate buckets for each data type is the recommended approach for GitLab.

A limitation of our configuration is that each use of object storage is separately configured. We have an issue for improving this and easily using one bucket with separate folders is one improvement that this might bring.

There is at least one specific issue with using the same bucket: when GitLab is deployed with the Helm chart restore from backup will not properly function unless separate buckets are used.

One risk of using a single bucket would be if your organization decided to migrate GitLab to the Helm deployment in the future. GitLab would run, but the situation with backups might not be realized until the organization had a critical requirement for the backups to work.

Configure Advanced Search (STARTER ONLY)

You can leverage Elasticsearch and enable Advanced Search for faster, more advanced code search across your entire GitLab instance.

Elasticsearch cluster design and requirements are dependent on your specific data. For recommended best practices about how to set up your Elasticsearch cluster alongside your instance, read how to choose the optimal cluster configuration.

Configure NFS (optional)

Object storage, along with Gitaly are recommended over NFS wherever possible for improved performance. If you intend to use GitLab Pages, this currently requires NFS.

See how to configure NFS.

WARNING: From GitLab 13.0, using NFS for Git repositories is deprecated. From GitLab 14.0, technical support for NFS for Git repositories will no longer be provided. Upgrade to Gitaly Cluster as soon as possible.

Troubleshooting

See the troubleshooting documentation.